Teknologi Material Komposit

September 2, 2007

Perkembangan teknologi material telah melahirkan suatu material jenis baru yang dibangun secara bertumpuk dari beberapa lapisan. Material ini lah yang disebut material komposit. Material komposit terdiri dari lebih dari satu tipe material dan dirancang untuk mendapatkan kombinasi karakteristik terbaik dari setiap komponen penyusunnya. Pada dasarnya, komposit dapat didefinisikan sebagai campuran makroskopik dari serat dan matriks. Serat merupakan material yang (umumnya) jauh lebih kuat dari matriks dan berfungsi memberikan kekuatan tarik. Sedangkan matriks berfungsi untuk melindungi serat dari efek lingkungan dan kerusakan akibat benturan.

Serat kaca (glass fibre) adalah material yang umum digunakan sebagai serat. Namun, teknologi komposit saat ini telah banyak menggunakan karbon murni sebagai serat. Serat karbon memiliki kekuatan yang jauh lebih baik dibanding serat kaca tetapi biaya produksinya juga lebih mahal. Komposit dari serat karbon memiliki sifat ringan dan juga kuat. Komposit jenis ini banyak digunakan untuk struktur pesawat terbang, alat-alat olahraga, dan terus meningkat digunakan sebagai pengganti tulang yang rusak.

Selain serat kaca, polimer yang biasanya menjadi matriks juga dapat dipakai sebagai serat atau penguat. Contohnya, kevlar merupakan serat polimer yang sangat kuat dan dapat meningkatkan toughness dari material komposit. Kevlar dapat digunakan sebagai serat dari produk komposit untuk struktur ringan yang handal, misalnya bagian kritis dari struktur pesawat terbang. Sebenarnya, material komposit bukanlah pengguaan asli dari kevlar. Kevlar dikembangkan untuk pengganti baja pada ban radial dan untuk membuat rompi atau helm antipeluru.

Sedangkan untuk matriks, kebanyakan material komposit modern menggunakan plastik thermosetting, yang biasanya disebut resin. Plastik adalah polimer yang mengikat serat dan membantu menentukan sifat fisik dari material komposit yang dihasilkan. Plastik termosetting berwujud cair teteapi akan mengeras dan menjadi rigid ketika dipanaskan. Plastik ini memiliki tahanan terhadap serangan zat kimia yang baik meskipun berada pada lingkungan ekstrim.

Untuk tujuan khusus, digunakan matriks dari keramik, karbon dan logam. Contohnya, keramik digunakan untuk material komposit yang didesain bekerja pada temperatur sangat tinggi dan karbon digunakan untuk produk yang menerima gaya gesek seperti bearing dan gir.

Pada material komposit dikenal istilah lamina dan laminate. Lamina adalah satu lembar komposit dengan satu arah serat tertentu, sedangkan laminate adalah gabungan beberapa lamina. Laminate dibuat dengan cara memasukkan pre-preg lamina ke dalam autoclave selama selang waktu tertentu dan dengan tekanan serta temperatur tertentu pula. Auroclave adalah suatu alat semacam oven bertekanan untuk menggabungkan lamina.

Dibanding dengan material konvensional keunggulan komposit antara lain yaitu memiliki kekuatan yang dapat diatur (tailorability), tahanan lelah (fatigue resistance) yang baik, tahan korosi, dan memiliki kekuatan jenis (rasio kekuatan terhadap berat jenis) yang tinggi.

Manfaat utama dari penggunaan komposit adalam mendapatkan kombinasi sifat kekuatan serta kekakuan tinggi dan berat jenis yang ringan. Dengan memilih kombinasi material serat dan matriks yang tepat, kita dapat membuat suatu material komposit dengan sifat yang tepat sama dengan kebutuhan sifat untuk suatu struktur tertentu dan tujuan tertentu pula.

Penerbangan modern, baik sipil maupun militer, adalah contoh utamanya. Keduanya akan menjadi sangat tidak efisien tanpa adanya material komposit. Material komposit canggih kini telah umum digunakan pada bagian sayap dan ekor, propeller, bilah rotor, dan juga struktur internal pesawat terbang. Selain aplikasi di industri dirgantara, dewasa ini material komposit telah banyak juga digunakan untuk badan mobil F1, alat-alat olahraga, struktur kapal dan industri migas.

Hambatan dalam aplikasi material komposit umumnya adalah soal biaya. Meskipun sering kali proses manufaktur material komposit lebih efisien, namun material mentahnya masih terlalu mahal. Material komposit masih belum bisa secara total menggantikan material konvensional seperti baja, tetapi dalam beberapa kasus kita memiki kebutuhan akan hal itu. Tidak diragukan, dengan teknologi yang terus berkembang, pengunaan baru dari material komposit akan bermunculan. Kita belum melihat semua yang material komposit dapat lakukan.


RRA: Solusi Atasi Stress Corrosion Cracking

Agustus 27, 2007

Aluminium adalah material yang banyak sekali digunakan untuk konstruksi, mulai dari sepeda, otomotif, kapal laut hingga pesawat udara. Keunggulan material aluminium adalah berat jenisnya yang ringan dan kekuatannya yang dapat ditingkatkan sesuai dengan kebutuhan. Kekuatan aluminium biasanya ditingkatkan dengan cara paduan (alloying) dan memberi perlakuan panas (heat treatment).

Kebanyakan material aluminium ditingkatkan kekuatannya dengan suatu mekanisme penguatan bahan logam yang disebut precipitation hardening. Dalam precipitation hardening harus ada dua fasa, yaitu fasa yang jumlahnya lebih banyak disebut matriks dan fasa yang jumlahnya lebih sedikit disebut precipitate.Mekanisme penguatan ini meliputi tiga tahapan, yaitu solid solution treatment: memanaskan hingga diatas garis solvus untuk mendapatkan fasa larutan padat yang homogen, quenching: didingan dengan cepat untuk mempertahankan struktur mikro fasa padat homogen agar tidak terjadi difusi, dan aging: dipanaskan dengan temperatur tidak terlalu tinggi agar terjadi difusi fasa alpha pada jarak pendek membentuk precipitate.

Paduan aluminium kekuatan tinggi seperti Al-7075, 7050, dan 2024 yang banyak dipakai pada struktur pesawat terbang memiliki kekurangan dan keterbatasan, khususnya pada kombinasi kekuatan dan tahanan retaknya. Al-7075 memiliki tahan yang buruk terhadap korosi jenis exfoliation dan stress-corrosion-cracking (SCC), khususnya jika mengalami perlakuan panas T6. SCC adalah retak merambat yang terjadi pada lingkungan korosif karena adanya tegangan. Pada Al-7075, tahanan terhadap SCC dapat ditingkatkan melalui overaging misalnya dengan memeberi perlakuan panas T73. Perlakuan panas T73 merupakan perlakuan panas dengan two stage aging, yaitu pada temperatur konstan 121 derajat celcius dan konstan 171 derajat celcius. Namun, pemberian perlakuan panas T73 dapat menurunkan kekuatan hingga 10-15 % dari kekuatan maksimum yang dapat dicapai melalui perlakuan panas T6.

Solusi untuk meningkatkan tahanan SCC dan tahanan retak (fracture toughness) dengan tetap mempertahankan kekuatan dari perlakuan panas T6 adalah dengan menerapkan Retrogression dan reaging (RRA). RRA adalah suatu cara baru perlakuan panas (heat treatment) yang diterapkan pada paduan aluminium yang mengalami precipitation hardening . RRA ini dapat dilakukan pada paduan aluminium kekuatan tinggi seri 7xxx (dengan bahan paduan Al-Mg-Zn-Cu ). Melalui RRA maka akan didapatkan paduan aluminium dengan kekuatan pada perlakuan panas T6 dan tahanan SCC sebagaimana perlakuan panas T73.

Retrogression and Reaging dapat dilakukan dengan tahap-tahap berikut :
1. Solution heat treatmment pada suhu 470°C
2. Quenching pada temperatur ruang
3. Artificial aging selama 24 jam pada temperatur 120°C
4. Retrogression, yaitu pemanasan singkat (sekitar 40 menit) pada temperatu tinggi (200-280 °C)
5. Quenching , kemudian Re-aging seperti pada T6, yaitu dengan temperatur 120°C selama 24 jam
Langkah 1 s.d. 3 adalah tahapan pada perlakuan panas T6.

Prosedur diatas menunjukkan bahwa material yang dihasilkan memiliki sifat kekutan tarik dan tahanan retak material sama dengan hasil perlakuan panas T6 namun dengan tahanan stress-corrosion-cracking yang meningkat.

Namun demikian, RRA tidak hanya meningkatkan kekuatan material, tetapi konduktivitas elektrik material juga meningkat seiring bertambahnya waktu retrogression. Hasil eksprerimen menunjukkan konduktivitas elektrik meningkat secara proporsional terhadap tahanan SCC ketika dilakukan aging seperti pada perlakuan panas T6.

RRA heat treatment saat ini dipakai dalam pengembangan beberapa paduan aluminium, antara lain adalah seri 7150 dan 7055. Kedua paduan ini memiliki banyak aplikasi pada struktur pesawat udara. Contohnya adalah struktur upper wing Boeing-777 yang dibuat dari lempengan aluminium 7055-T7751 dan ekstrusi T77511.


Aluminum Alloy for Aerostructure

Desember 7, 2006

Paduan aluminium merupakan material utama yang saat ini digunakan industri pesawat terbang komersial. Aluminium dipilih karena memiliki sifat ringan dan kekuatannya dapat dibentuk dengan cara dipadu dengan unsur lain. Permasalahan yang dihadapi adalah pemilihan jenis unsur apa yang akan dipadu dengan aluminium untuk mendapatkan karakteristik material yang dibutuhkan. Unsur paduan yang ditambahkan dan perlakuan panas (heat treatment) yang diberikan pada aluminium selama pemrosesan sangat mempengaruhi sifat paduan aluminium yang dihasilkan.

Awalnya paduan aluminium dikembangkan dengan tujuan mendapatkan material yang kuat dan ringan. Namun, seiring dengan berkembangnya kebutuhan struktur pesawat udara komersial dengan ukuran yang semakin besar, material yang dibutuhkan tidak hanya kuat dan ringan saja. Dewasa ini paduan aluminium dikembangkan untuk mendapatkan material yang kuat, ringan, usia pakai yang lama, biaya produksi rendah, toleransi kegagalan tinggi, dan tahanan korosi yang baik.

Sekitar tahun 1900 duralium, paduan aluminium dengan tembaga, magnesium, dan mangan, petama kali diperkenalkan di Jerman. Jenis ini merupakan paduan aluninium yang dapat diberi perlakuan panas (heat treatment) dan menghasilkan kombinasi kekuatan dan keuletan yang baik. Saat ini paduan ini dikenal dengan nama aluminium 2017-T4. Pesawat udara yang pertama kali memakai struktur rangka aluminium adalah Junkers F13 yang diproduksi di Jerman pada tahun 1920 dan kemudian disusul Douglas DC3 yang memakai aluminium 2024-T3. Keunggulan aluminium 2024-T3 adalah memiliki tahanan fatik yang lebih baik dari versi sejenisnya.

Selama Perang Dunia II, Paduan Aluminium dengan dengan kekuatan tinggi diperkenalkan. Paduan ini disebut aluminium 7075-T6 yang merupakan paduan aluminium, seng, magnesium, dan timah. Karena kekuatannya yang tinggi, paduan ini banyak dipakai pada struktur pesawat tempur saat itu. Versi modifikasinya, alumunium 7178-T6, berhasil dikembangkan dan diterapkan pada pesawat terbang komersial Boeing-707. Namun, pemakain aluminium 7178-T6 ini tidak dilanjutkan oleh Boeing karena bermasalah pada daya tahan dan toleransi kegagalan.

Boeing 777-200

Boeing-777 merupakan pesawat udara komersial terbesar dengan dua mesin propulsi yang menggunakan material struktur utama dari aluminium. Sekitar 70 persen struktur Boeing-777 dibuat dari material paduan aluminium. Struktur upper wing Boeing-777 dibuat dari lempengan dan ekstrusi aluminium 7055-T7751. Paduan ini dipilih karena memiliki kekuataan dan tahanan retak yang lebih baik dari aluminium 7150-T7. Sedangkan struktur fuselage dibuat dari aluminium 2524-T3 yang merupakan modifikasi dari aluminium 2024-T3. modofikasi ini dilakukan untuk meningkatkan tahanan retak (fracture toughness) dan kemampuan menghambat kelelahan struktur akibat pertumbuhan retak (fatigue crack growth resistance). Pengembangan paduan aluminium untuk struktur Boeing-777 ini dilakukan oleh Alcoa.


Ikuti

Get every new post delivered to your Inbox.